Bacterial community characteristics under long-term antibiotic selection pressures.
نویسندگان
چکیده
To investigate bacterial community characteristics under long-term antibiotic selection pressures, water samples from the upstream and the downstream sections of two rivers individually receiving the treated penicillin G and oxytetracycline production wastewater, as well as the anaerobic and the aerobic effluent of the penicillin G production wastewater treatment plant, were taken and analyzed. Antibiotic resistance ratios of bacterial communities in water samples were estimated by culture-based analysis. The majority of bacterial colonies (approximately 55%-70%) in both downstream rivers and the aerobic effluent showed resistance to 80 μg/ml of antibiotics tested, while the resistance ratios were less than 10% and 5% respectively for both upstream rivers. Six 16S rRNA gene clone libraries were constructed with 355 sequences and 215 OTUs totally obtained representing 465 clones. The antibiotic stresses seemed not reduce the diversities of bacterial communities in antibiotic containing water samples compared to those in the two reference upstream rivers. Bacterial groups present in the two reference upstream rivers were common residents in freshwater ecosystems, with the dominant groups as the phyla Proteobacteria including Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria, as well as Actinobacteria and Bacteroidetes. The phyla Proteobacteria and Firmicutes were dominant in all antibiotic containing water samples, with the clones belonged to Deltaproteobacteria and Epsilonproteobacteria significantly abundant, as well as Gram-positive low GC bacteria in the classes Clostridia and Bacilli. It thus seemed that Deltaproteobacteria, Epsilonproteobacteria, Clostridia and Bacilli might be specifically associated with antibiotic containing environments.
منابع مشابه
Antibiotics in the environment
Molecules with antibiotic properties, produced by various microbes, have been around long before mankind recognized their usefulness in preventing and treating bacterial infections. Bacteria have therefore been exposed to selection pressures from antibiotics for very long times, however, generally only on a micro-scale within the immediate vicinity of the antibiotic-producing organisms. In the ...
متن کاملQuantifying selective pressures driving bacterial evolution using lineage analysis.
Organisms use a variety of strategies to adapt to their environments and maximize long-term growth potential, but quantitative characterization of the benefits conferred by the use of such strategies, as well as their impact on the whole population's rate of growth, remains challenging. Here, we use a path-integral framework that describes how selection acts on lineages -i.e. the life-histories...
متن کاملChange in microbial community in landfill refuse contaminated with antibiotics facilitates denitrification more than the increase in ARG over long-term
In this study, the addition of sulfamethazine (SMT) to landfill refuse decreased nitrogen intermediates (e.g. N2O and NO) and dinitrogen (N2) gas fluxes to <0.5 μg-N/kg-refuse·h-1, while the N2O and N2 flux were at ~1.5 and 5.0 μg-N/kg-refuse·h-1 respectively in samples to which oxytetracycline (OTC) had been added. The ARG (antibiotic resistance gene) levels in the refuse increased tenfold aft...
متن کاملA Treatment Plant Receiving Waste Water from Multiple Bulk Drug Manufacturers Is a Reservoir for Highly Multi-Drug Resistant Integron-Bearing Bacteria
The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manuf...
متن کاملThe SOS response increases bacterial fitness, but not evolvability, under a sublethal dose of antibiotic
Exposure to antibiotics induces the expression of mutagenic bacterial stress-response pathways, but the evolutionary benefits of these responses remain unclear. One possibility is that stress-response pathways provide a short-term advantage by protecting bacteria against the toxic effects of antibiotics. Second, it is possible that stress-induced mutagenesis provides a long-term advantage by ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water research
دوره 45 18 شماره
صفحات -
تاریخ انتشار 2011